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Introduction: QA Evaluation

: o . ? .
Q: Who is the president of the USA QAModel - QA model outputs are typically evaluated

using lexical match metrics, such as

Original answer set - Donald Trump e A: Donald Trump
Exact Match (EM) or F1

O,

]

- Evaluation by Lexical Match- -

VRS
SRR

-  These metrics compare the model’s

outputs with the provided answer set
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Challenges in QA Evaluation

. . . o) . . .
Q: Who is the president of the USA SRlERE - Existing answer sets usually include only a

single answer
Original answer set - Donald Trump «=ss A: Donald J. Trump

O,

® - Answers can appear in different surface
r - Evaluation by Lexical Match- - formats
ev 0 @EEED

(e.g., Donald Trump vs. Donald J. Trump)
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Challenges in QA Evaluation

o . . ? . . .
Q: Who is the president of the USA? QA Moget - Recent studies utilize LLM itself as a QA

model, usually resulting in long-form

Original answer set - Donald Trump <= A: Donald J. Trump _ _
O is the president ... answers with various surface formats
L/

]

- Evaluation by Lexical Match- -

eM  :0 @EEED

- Lexical match metrics are overly strict,

leading to False Negative evaluations
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Challenges in QA Evaluation

Q: Who is the president of the USA? QA Model

Original answer set - Donald Trump 4= A:Donald J. Trump

@ is the president ...

LLM as a judge

LLM as ajudge, directly prompting LLMs to
evaluate outputs, has shown reliable

performance

However, it is expensive and suffers from

poor interpretability, showing various biases
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Challenges in QA Evaluation

Can we build a QA evaluation system

that 1s cost-efficient and reliable?
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Motivation: Correlation Between Surface Formats and Entity Types

Q: Who is the president of the USA?

Original answer set: Donald Trump

NER: “PERSON"

Possible surface formats

Donald Trump
Donald J. Trump
Donald John Trump

Entity types drive surface form variations

For examples, [PERSON] entities may
appear as abbreviations, last names, or full

name
(e.g. Donald John Trump - Trump - Donald J. Trump)
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Motivation: Correlation Between Surface Formats and Entity Types

Q: When was Donald Trump born?

Original answer set: June 14, 1946 - Entity types drive surface form variations
NER: "DATE"
- For examples, [DATE] entities may differ in
Possible surface formats order (e.g., June 14 > 14 June) or

June 14,1946 abbreviation (e.g., June = Jun).
June 14th 1946

14 June, 1946
14 Jun, 1946
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Method: Soft EM with Entity-Driven Answer Set Expansion

Entity type Format types | Examples
): How many episodes are in season 2 of the handmades tale
Numerals Gold Answer: 13
Model Prediction: The Season 2 of the Handmaid's Tale
have thirteen episodes.
Numeric Different 0): When was ve rishta kya kehlata hai started
- TIME Representation | Gold Answer: January 12, 2000
- MONEY {symbaols, Model Prediction: The Ye Rishta Kya Kehlata Hai started
] QUJ‘;LNTITY abbrev., order) | in 12 Jan., 2009,
- PERCENT Q: What's the population of fargo north dakota
- CARDINAL Specificity Gold Answer: 120,762
- DATE Model Prediction: The population of Fargo, North Dakota is
- ORDINAL about 120,000.

Unit conversion

): How long is the movie son of god
Gold Answer: 138 minutes
Model Prediction: The movie Son of God 15

2 hiours and 18 minutes long.

Different 0): Where was the ncaa foothall championship game played 2018

Non-numeric representation | Gold Answer: Atlanta, Georgia
- PERSON {symbols, Model Prediction: The 2018 NCAA Football Championship
- GPE abbrev., order) | Game was played in Atlanta, GA.
. ORG Q: Who played lionel in all in the family
- Other Specificity Gold Answer: Michael Evans

Model Prediction: Mike Evans played Lionel Jefferson in All

in the Family.

{): The pectoralis minor is located deep to which muscle
NiA Comlextual Gold Answer: beneath the pectoralis major

Paraphrase '

Model Prediction: under the pectoralis major muscle

We categorize the surface format variation

of each entity type

Spacy’s NER is used to classify answer set
into 19 categories (18 predefined by Spacy +
an additional N/A category)
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Method: Soft EM with Entity-Driven Answer Set Expansion

Step 1. Entity-Driven Answer Set Expansion
Q: Who is the president of the USA? QA Model

- - Manually create few-shot expanded
Original answer set - Donald Trump <=y A:Donald J. Trump

is the president... :
N ——— answer set for each entity type

Entity-driven set expansion by ICL

- Leverage InstructGPT (GPT-3.5-turbo-
Donald Trump

Donald J. Trump Instruct) with In-Context Learning (ICL) for
Donald John Trump

expansion
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Method: Soft EM with Entity-Driven Answer Set Expansion

Step 2: Evaluation with Soft EM
Q: Who is the president of the USA? QA Model

Entity-driven expanded answer set
4m) A:Donald J. Trump

Donald Trump is the president...
Donald J. Trump P expanded answer set
Donald John Trump “

- Evaluate QA model outputs using the

-  Soft EM marks a candidate as correct if it

Includes any answer from the expanded set
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Research Questions

RQ #1: Is our method effective compared to other answer set expansion

approaches? (e.g. knowledge-base methods)

RQ #2: Is our method reliable compared to other QA evaluation metrics?
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Research Question #1

RQ #1: Is our method effective compared to other answer set expansion

approaches? (e.g. knowledge-base methods)
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Experiment Setup

Dataset

* 3,020 instances from Natural Questions (Kwiatkowski 2019)
* 1,938 instances from TriviaQA (Joshi et al., 2017)
* Responses from 5 QA models are evaluated — Fusion in Decoder (FiD), GPT 3.5, ChatGPT, GPT4, BingChat

* Human judgment annotation from EVOUNA (Wang et al., 2023) used as a reference

Evaluation

* Accuracy against human judgment
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Experiment Setup

Baselines
Answer set expansion method using knowledge base
* Freebase: Expansion using Freebase knowledge base (Bollacker et al., 2008)

* Wiki: Expansion using Wikipedia knowledge base

Answer set expansion method using InstructGPT (GPT-3.5-turbo-instruct)
* Inst-zero: Expansion with zero-shot example
* Inst-random: Expansion with random few-shot examples regardless of entity type

* Inst-entity (Ours): Expansion with entity type-driven few-shot examples
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Result

Natural Questions
Evaluation Method FiD GPT3.5 ChatGPT3.5 ChatGPT4 BingChat | Avg.
Soft EM with Answer Set expansion

Freebase 89.8 B85.5 81.7 83.9 3.9 85.0
Inst-zero 85.4 794 79.3 82.0 83.8 82.0 .
Instrandomn s 1 838 8.2 56,0 e |gss ¢ Ourmethod (Inst-Entity) demonstrates the
Inst-entity (Ours) 91.0 86.8 85.7 88.2 87.7 87.9 ) . .
TrviaOA highest reliability across 5 QA models
Evaluation Method FiD GPT3.5 ChatGPT3.5 ChatGPT4 BingChat | Avg.
Soft EM with Answer Set Expansion and 2 datasets
Freebase 90.6 89.4 89.0 88.4 87.0 88.9
Wiki 920 922 92.3 91.2 90.1 91.6
Inst-zero 88.1 86.1 88.6 89.7 90.3 88.6
Inst-random 59.3 874 80.4 00.3 91.2 80.5
Inst-entity (Ours) 92.6 92.5 93.3 93.0 92.4 92.8

Table 13: Reliability (accuracy w.r.t. human verdicts)
of evaluation methods tested on the output of five QA
models. Bold indicates the highest score, and underline
indicates the second highest score.
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Result

B Numeric

- We separately report the accuracy based

B Non-numeric

B NA

Accuracy NQ on entity types (Numeric, Non-numeric, N/A)
20 88.1 Ll 88 :::;.i-:;:
9 .

s BM//\;/(//

80 - r6s —3

| M7 ma  maz e «  Our method (Inst-Entity) demonstrates the

Ofg- FB lnstzero Instrandom Inst-Entity highest reliability regardless of entity

Accuracy TQ ty p esS

85 9.4 936

90 88.2 2 88.3 a3 = ///"9‘5,4

85 B4 84.4 839 _______HET

80 812 80 - 79.3 833

80.1

« Our method (Inst-Entity) is especially

75

Orig. FB  Wiki Inst-zero Inst-random Inst-Entity effective in numeric entity type
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Research Questions

RQ #1: Is our method effective compared to other answer set expansion

approaches? (e.g. knowledge-base methods) — Yes!

RQ #2: Is our method reliable compared to other QA evaluation metrics?
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Research Question #2

— Yesl!

RQ #2: Is our method reliable compared to other QA evaluation metrics?
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Experiment Setup

Dataset

* 3,020 instances from Natural Questions (Kwiatkowski 2019)
* 1,938 instances from TriviaQA (Joshi et al., 2017)
* Responses from 5 QA models are evaluated — Fusion in Decoder (FiD), GPT 3.5, ChatGPT, GPT4, BingChat

* Human judgment annotation from EVOUNA (Wang et al., 2023) used as a reference

Evaluation

* Accuracy against human judgment
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Experiment Setup

Baselines
Lexical Matching-based with original answer set
* Hard Exact Match (Hard EM): Candidate is correct if it exactly matches the gold answer
* Soft Exact Match (Soft EM): Candidate is correct if it contains the gold answer

* F1: Measure the token overlap between the reference answer and prediction

Model-based
* BEM (Bulian et al., 2022): Pre-trained BERT model for answer equivalence

* Insteval: Directly prompt InstructGPT (GPT-3.5-turbo-instruct) to evaluate response
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Result

Natural Questions

Evaluation Method FiD GPT3.5 ChalGPT3.5 ChatGPT4 BingChat | Avg.
Model-based . .
BEM 935 736 77.9 82.1 840 | 822 « Our method (Inst—Entlty) achieves the
Insteval 91.8 852 86.2 89.2 88.0 | 88.1
Lexical Matching-based . . .«
Soft EM 89.7  84.9 80.5 82.9 827 | 84.1 SeCOnd-hlgheSt reliabi |Ity across 5 QA
Hard EM 869 373 28.5 212 201 | 38.8
Fl 9.4 402 31.5 23.4 205 | 420
Soft EV with Answer Set expansion models and 2 datasets
Inst-entity (Ours) 91.0 86.8 85.7 88.2 877 | 879
TriviaQA
Evaluation Method FiD GPT3.5 ChatGPT3.5 ChatGPT4 BingChat | Avg.
Model-based
REM 938 892 88.3 92.2 903 | 90.8
Insteval 9.4 942 94.9 96.0 95.1 | 95.3 _
Lexical Matching-based « Insteval (LLM-as-a-judge) demonstrates
Soft EM 88.0 875 87.3 86.2 848 | 86.8
Hard EM 853 408 22.0 132 104 | 343 _ ] o
Fl 930 509 263 206 10.6 | 40.3 the hi g hest reliabi ||ty
Soft EM with Answer Set Expansion
Inst-entity (Ours) 92.6  92.5 93.3 93.0 924 | 928

Table 14: Reliability (accuracy w.r.t. human verdicts)
of evaluation methods tested on the output of five QA
models. Bold indicates the highest score, and underline
indicates the second highest score.
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Result: Comparison Against Insteval

o

B Insteval

Inference calls No { M Inst-entity (ours) | TQ

35,000
30,200

19,380

1,0381,098

1 5 10 1 5 10
# of Experiments # of Experiments

« Insteval requires inference calls that scale linearly with the number of evaluation

 In contrast, our method requires only a single inference call for evaluation while

maintaining comparative reliability
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Result: Comparison Against Insteval

Type Examples

Question: who has played in the most masters tournaments
Answer: [Gary Player]

Nonsensical | Model prediction: Jack Nicklaus has played in the most
Evaluation | Masters Tournaments, with a total of 44 appearances.

(84%)

Human judgement on Model prediction: Incorrect
Insteval judgement on Model prediction: Correct

 Insteval suffers from poor interpretability, with 84% of its errors lacking understandable

reasons

 In contrast, our method offers clearer justification for evaluation outcomes
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Research Questions

RQ #1: Is our method effective compared to other answer set expansion

approaches? (e.g. knowledge-base methods) — Yes!

RQ #2: Is our method reliable compared to other QA evaluation metrics?
— Yes! Additionally, our method offers significant advantages in cost efficiency

and interpretability
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Takeaways

« Proposed to expand QA answer sets based on entity type and evaluate with Soft EM
« Achieved high correlation with human judgments, with benefits in cost and interpretability

« Open-sourced the expanded answer set for the community

Contact: drl123@snu.ac.kr

Datasets
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