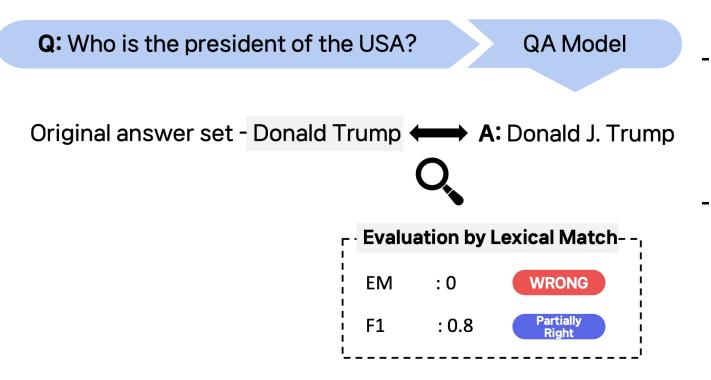
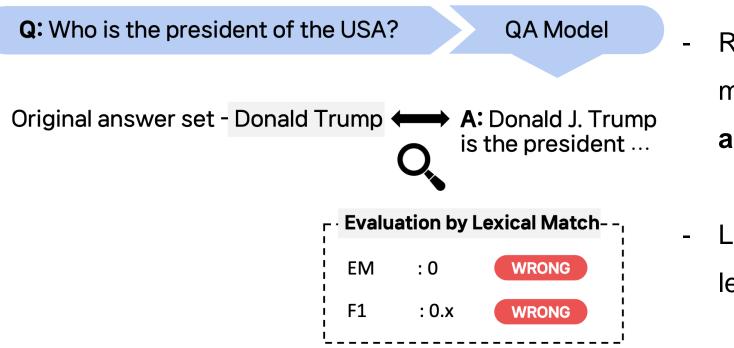

Dongryeol Lee, Minwoo Lee, Kyungmin Min, Joonsuk Park[†], Kyomin Jung[†] [†] = corresponding authors


COLING 2025

Introduction: QA Evaluation

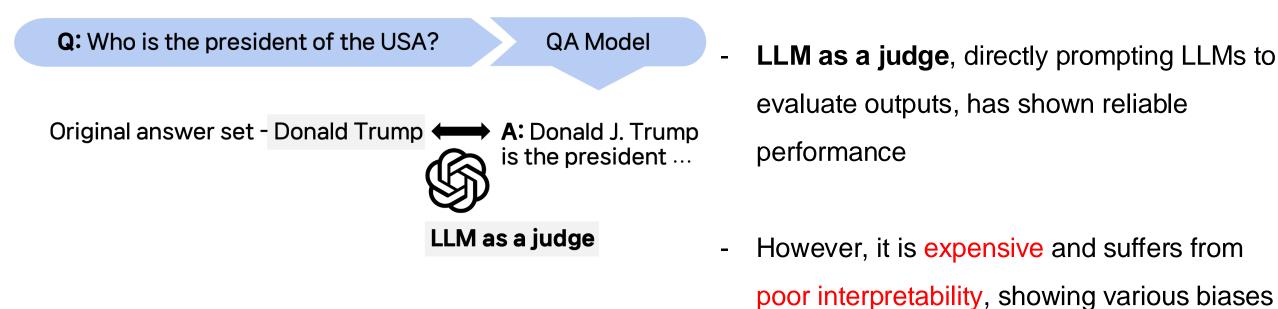
- QA model outputs are typically evaluated using lexical match metrics, such as Exact Match (EM) or F1
- These metrics compare the model's outputs with the provided answer set

Challenges in QA Evaluation



- Existing answer sets usually include only a single answer
- Answers can appear in different surface

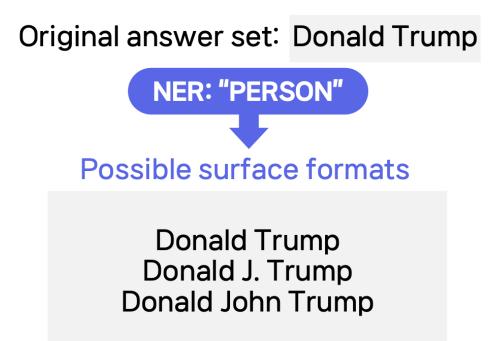
formats


(e.g., Donald Trump vs. Donald J. Trump)

Challenges in QA Evaluation

- Recent studies utilize LLM itself as a QA
 model, usually resulting in long-form
 answers with various surface formats
- Lexical match metrics are overly strict,
 leading to False Negative evaluations

Challenges in QA Evaluation

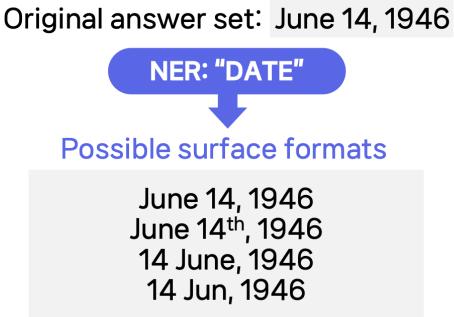


Challenges in QA Evaluation

Can we build a QA evaluation system that is cost-efficient and reliable?

Motivation: Correlation Between Surface Formats and Entity Types

Q: Who is the president of the USA?

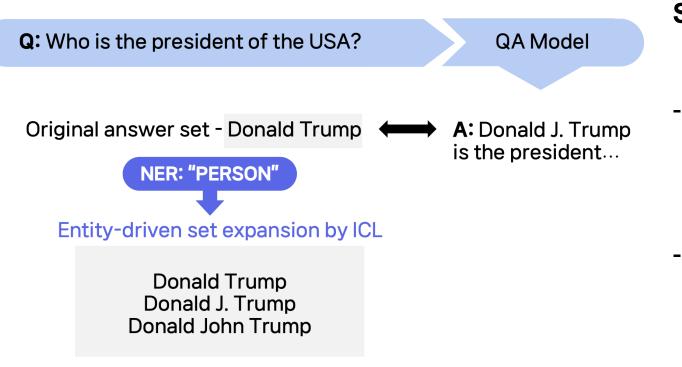


- Entity types drive surface form variations
- For examples, **[PERSON]** entities may appear as abbreviations, last names, or full name

(e.g. Donald John Trump \rightarrow Trump \rightarrow Donald J. Trump)

Motivation: Correlation Between Surface Formats and Entity Types

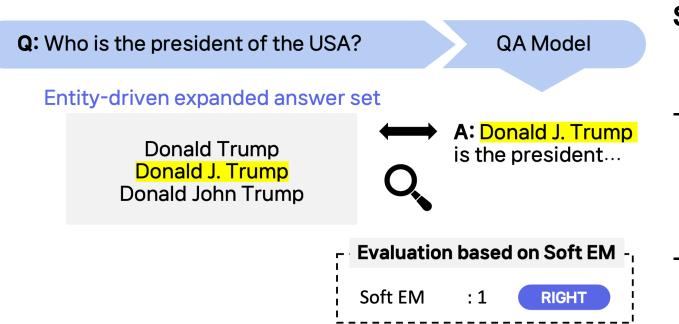
Q: When was Donald Trump born?


- Entity types drive surface form variations
- For examples, **[DATE]** entities may differ in order (e.g., June 14 \rightarrow 14 June) or abbreviation (e.g., June \rightarrow Jun).

Method: Soft EM with Entity-Driven Answer Set Expansion

Entity type	Format types	Examples Q: How many episodes are in season 2 of the handmades tale		
۱ ۱		Gold Answer: 13		
í I	Numerals	Model Prediction: The Season 2 of the Handmaid's Tale		
		have thirteen episodes.		
í -	Different	Q: When was ye rishta kya kehlata hai started		
Numeric	Representation	Gold Answer: January 12, 2009		
- TIME	(symbols,	Model Prediction: The Ye Rishta Kya Kehlata Hai started		
- MONEY	abbrev., order)	in 12 Jan., 2009.		
- QUANTITY	abbrev., order)	Q: What's the population of fargo north dakota		
- PERCENT	Specificity	Gold Answer: 120,762		
- CARDINAL		Model Prediction: The population of Fargo, North Dakota is		
- DATE		about 120,000.		
- ORDINAL		Q: How long is the movie son of god		
	Unit conversion	Gold Answer: 138 minutes		
		Model Prediction: The movie Son of God is		
		2 hours and 18 minutes long.		
	Different	Q: Where was the near football championship game played 2018		
	representation	Gold Answer: Atlanta, Georgia		
Non-numeric	(symbols,	Model Prediction: The 2018 NCAA Football Championship		
- PERSON	abbrev., order)	Game was played in Atlanta, GA.		
- GPE	abbiett, order)	Q: Who played lionel in all in the family		
- ORG	Specificity	Gold Answer: Michael Evans		
- Other		Model Prediction: Mike Evans played Lionel Jefferson in All		
		in the Family.		
	Contextual Paraphrase	Q: The pectoralis minor is located deep to which muscle		
N/A		Gold Answer: beneath the pectoralis major		
		Model Prediction: under the pectoralis major muscle		

- We categorize the surface format variation of each entity type
- Spacy's NER is used to classify answer set into 19 categories (18 predefined by Spacy + an additional N/A category)


Method: Soft EM with Entity-Driven Answer Set Expansion

Step 1: Entity-Driven Answer Set Expansion

- Manually create few-shot expanded answer set for each entity type
- Leverage InstructGPT (GPT-3.5-turboinstruct) with In-Context Learning (ICL) for expansion

Method: Soft EM with Entity-Driven Answer Set Expansion

Step 2: Evaluation with Soft EM

- Evaluate QA model outputs using the expanded answer set
- Soft EM marks a candidate as correct if it includes any answer from the expanded set

Research Questions

RQ #1: Is our method effective compared to other answer set expansion approaches? (e.g. knowledge-base methods)

RQ #2: Is our method reliable compared to other QA evaluation metrics?

Research Question #1

RQ #1: Is our method effective compared to other answer set expansion approaches? (e.g. knowledge-base methods)

RQ #2: Is our method reliable compared to other QA evaluation metrics?

Experiment Setup

Dataset

- 3,020 instances from **Natural Questions** (Kwiatkowski 2019)
- 1,938 instances from **TriviaQA** (Joshi et al., 2017)
- Responses from **5 QA models** are evaluated Fusion in Decoder (FiD), GPT 3.5, ChatGPT, GPT4, BingChat
- Human judgment annotation from EVOUNA (Wang et al., 2023) used as a reference

Evaluation

Accuracy against human judgment

Experiment Setup

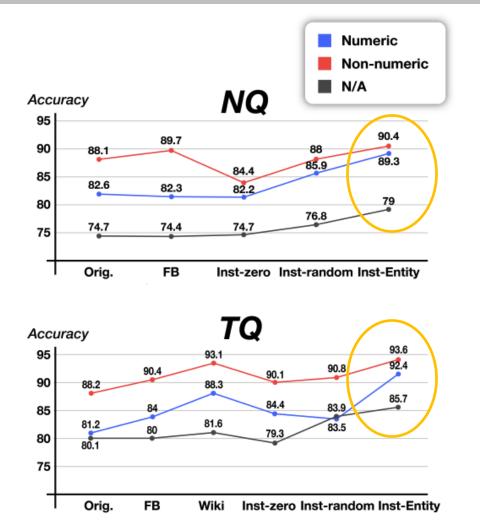
Baselines

Answer set expansion method using knowledge base

- Freebase: Expansion using Freebase knowledge base (Bollacker et al., 2008)
- Wiki: Expansion using Wikipedia knowledge base

Answer set expansion method using InstructGPT (GPT-3.5-turbo-instruct)

- Inst-zero: Expansion with zero-shot example
- Inst-random: Expansion with random few-shot examples regardless of entity type
- Inst-entity (Ours): Expansion with entity type-driven few-shot examples


Result

Natural Questions						
Evaluation Method	FiD	GPT3.5	ChatGPT3.5	ChatGPT4	BingChat	Avg.
Soft EM with Answer Set expansion						
Freebase	<u>89.8</u>	85.5	81.7	83.9	83.9	85.0
Inst-zero	85.4	79.4	79.3	82.0	83.8	82.0
Inst-random	88.1	83.8	<u>82.2</u>	<u>86.0</u>	<u>86.6</u>	85.3
Inst-entity (Ours)	91.0	86.8	85.7	88.2	87.7	87.9
TriviaQA						
Evaluation Method	FiD	GPT3.5	ChatGPT3.5	ChatGPT4	BingChat	Avg.
Soft EM with Answer Set Expansion						
Freebase	90.6	89.4	89.0	88.4	87.0	88.9
Wiki	<u>92.0</u>	<u>92.2</u>	<u>92.3</u>	<u>91.2</u>	90.1	<u>91.6</u>
Inst-zero	88.1	86.1	88.6	89.7	90.3	88.6
Inst-random	89.3	87.4	89.4	90.3	91.2	89.5
Inst-entity (Ours)	92.6	92.5	93.3	93.0	92.4	92.8

Table 13: Reliability (accuracy w.r.t. human verdicts) of evaluation methods tested on the output of five QA models. **Bold** indicates the highest score, and <u>underline</u> indicates the second highest score.

 Our method (Inst-Entity) demonstrates the highest reliability across 5 QA models and 2 datasets

Result

• We separately report the accuracy based on entity types (Numeric, Non-numeric, N/A)

 Our method (Inst-Entity) demonstrates the highest reliability regardless of entity types

• Our method (Inst-Entity) is especially effective in **numeric entity type**

Research Questions

RQ #1: Is our method effective compared to other answer set expansion approaches? (e.g. knowledge-base methods) – Yes!

RQ #2: Is our method reliable compared to other QA evaluation metrics?

Research Question #2

RQ #1: Is our method effective compared to other answer set expansion approaches? (e.g. knowledge-base methods) – Yes!

RQ #2: Is our method reliable compared to other QA evaluation metrics?

Experiment Setup

Dataset

- 3,020 instances from **Natural Questions** (Kwiatkowski 2019)
- 1,938 instances from **TriviaQA** (Joshi et al., 2017)
- Responses from **5 QA models** are evaluated Fusion in Decoder (FiD), GPT 3.5, ChatGPT, GPT4, BingChat
- Human judgment annotation from EVOUNA (Wang et al., 2023) used as a reference

Evaluation

Accuracy against human judgment

Experiment Setup

Baselines

Lexical Matching-based with original answer set

- Hard Exact Match (Hard EM): Candidate is correct if it exactly matches the gold answer
- Soft Exact Match (Soft EM): Candidate is correct if it contains the gold answer
- **F1**: Measure the token overlap between the reference answer and prediction

Model-based

- **BEM** (Bulian et al., 2022): Pre-trained BERT model for answer equivalence
- **Insteval**: Directly prompt InstructGPT (GPT-3.5-turbo-instruct) to evaluate response

Result

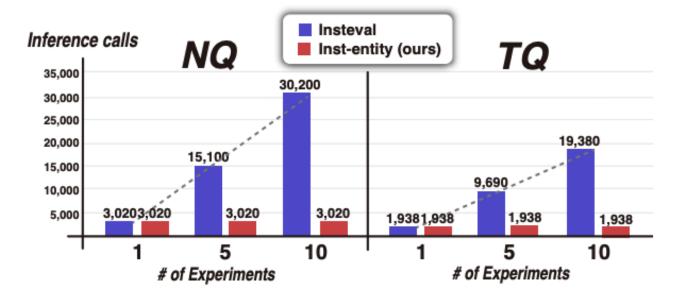

		Natu	ral Questions			
Evaluation Method	FiD	GPT3.5	ChatGPT3.5	ChatGPT4	BingChat	Avg.
Model-based						
BEM	93.5	73.6	77.9	82.1	84.0	82.2
Insteval	91.8	85.2	86.2	89.2	88.0	88.1
Lexical Matching-ba	used					
Soft EM	89.7	84.9	80.5	82.9	82.7	84.1
Hard EM	86.9	37.3	28.5	21.2	20.1	38.8
F1	94.4	40.2	31.5	23.4	20.5	42.0
Soft EM with Answer Set expansion						
Inst-entity (Ours)	91.0	86.8	<u>85.7</u>	<u>88.2</u>	<u>87.7</u>	<u>87.9</u>
TriviaQA						
Evaluation Method	FiD	GPT3.5	ChatGPT3.5	ChatGPT4	BingChat	Avg.
Model-based						
BEM	<u>93.8</u>	89.2	88.3	92.2	90.3	90.8
Insteval	96.4	94.2	94.9	96.0	95.1	95.3
Lexical Matching-ba	used					
Soft EM	88.0	87.5	87.3	86.2	84.8	86.8
Hard EM	85.3	40.8	22.0	13.2	10.4	34.3
F1	93.0	50.9	26.3	20.6	10.6	40.3
Soft EM with Answer Set Expansion						
Inst-entity (Ours)	92.6	92.5	<u>93.3</u>	93.0	<u>92.4</u>	92.8

Table 14: Reliability (accuracy w.r.t. human verdicts) of evaluation methods tested on the output of five QA models. **Bold** indicates the highest score, and <u>underline</u> indicates the second highest score.

 Our method (Inst-Entity) achieves the second-highest reliability across 5 QA models and 2 datasets

Insteval (LLM-as-a-judge) demonstrates
 the highest reliability

Result: Comparison Against Insteval

- Insteval requires inference calls that scale linearly with the number of evaluation
- In contrast, our method requires only a single inference call for evaluation while maintaining comparative reliability

Result: Comparison Against Insteval

Туре	Examples
	Question: who has played in the most masters tournaments
	Answer: [Gary Player]
Nonsensical	Answer: [Gary Player] Model prediction: Jack Nicklaus has played in the most
Evaluation	Masters Tournaments, with a total of 44 appearances.
(84%)	
	Human judgement on Model prediction: Incorrect
	Insteval judgement on Model prediction: Correct

- Insteval suffers from poor interpretability, with 84% of its errors lacking understandable reasons
- In contrast, our method offers clearer justification for evaluation outcomes

Research Questions

RQ #1: Is our method effective compared to other answer set expansion approaches? (e.g. knowledge-base methods) – Yes!

RQ #2: Is our method reliable compared to other QA evaluation metrics?

 Yes! Additionally, our method offers significant advantages in cost efficiency and interpretability

Takeaways

- Proposed to expand QA answer sets based on entity type and evaluate with Soft EM
- · Achieved high correlation with human judgments, with benefits in cost and interpretability
- Open-sourced the expanded answer set for the community

Datasets

Paper

Contact: drl123@snu.ac.kr

